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Reservoir computing is a machine learning framework characterized by its high computational
ability and quick learning, making it well-suited for a wide range of applications for real-time com-
puting. In this paper, we demonstrate that memory capacity of a reservoir recurrent neural network
scales sublinearly with the number of readout neurons. To elucidate this phenomenon, we develop
a theoretical framework for analytically deriving memory capacity, allowing us to attribute the
decaying growth of memory capacity to neuronal correlations. In addition, numerical simulations
reveal that the computational abilities required to solve increasingly complex nonlinear tasks emerge
sequentially as the number of readout neurons increases. Furthermore, our theoretical framework
suggests that the incremental increase of nonlinear computational capabilities is influenced by neu-
ronal correlations in a manner similar to memory capacity. Our findings establish a foundation for
designing scalable and cost-effective reservoir computing, providing novel insights into the interplay
between neuronal correlations, linear memory, and nonlinear processing.

Reservoir computing (RC) is a machine learning frame-
work for efficiently training large scale recurrent neural
networks (RNNs), referred to as ”reservoirs” in the con-
text of RC [1, 2]. In contrast to conventional training
methods such as backpropagation through time, RC op-
timizes only read-out weights and leaves the remaining
weights fixed, which enables quick and low-cost learning.
In spite of its training simplicity, RC has high compu-
tational performance and a broad range of applications
for processing time-series data [3]. RC is not restricted
to RNNs, and a wide variety of dynamical systems can
be utilized as reservoirs under appropriate conditions.
Specifically, RC using a real physical system such as soft
matter and optical systems, so called ”physical reser-
voir computing”, has been intensively studied in recent
years [4].

In a typical RC setting, the readout connections link-
ing reservoir units to output units are sparse [4]. This
means that the size of the reservoir (N) is substantially
larger than the number of readout units (L) that con-
nect to the output units. Empirically, the performance
of RC improves as an increase in L. However, imple-
menting a large number of readout connections can be
resource-intensive, especially in physical RC implemen-
tations. Consequently, understanding the relationship
between L and the computational ability of a reservoir is
essential for constructing cost-effective RC. In particular,
performance in RC depends on both the reservoir’s mem-
ory ability [5] and nonlinear processing capability [6], and
the number of readout units must be carefully chosen to
balance these two aspects according to the demands of a
given task. Despite its practical importance, a system-
atic framework for determining an appropriate L remains
largely unexplored. In this study, we aim to address this
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gap by elucidating how memory ability and nonlinear
computational ability scale with L, with the particular
focus on the role of neuronal correlations.
Here, we demonstrate for the first time that the the

memory ability of an RNN increases monotonically with
L, though its growth rate gradually declines (Fig.1).
This sublinear scaling of memory ability cannot be ex-
plained by the previous theoretical works assuming a
scaling regime where L is of order one relative to N ,
i.e. L ∼ O(1) because the memory ability in this regime
is proportional to L [7, 8]. To bridge the gap between
the observation and theory, we develop a novel theory
for analytically deriving memory ability for L ∼ O(

√
N).

Using our theory, we demonstrate that the correlation be-
tween reservoir neurons plays an important role in the de-
clining growth rate of memory ability, although the corre-
lation diminishes as O(1/

√
N). Furthermore, numerical

simulations show that the ability to perform more com-
plex nonlinear tasks emerges sequentially as L increases.
These findings indicate that the number of readout con-
nections should be tailored to the specific memory and
nonlinearity requirements of the task at hand.
We investigate computational capacity of RC using

a large random RNN as a reservoir (Fig.1(a)), which
is known as Echo state network (ESN) [1], one of the
canonical model for RC [9, 10]. The state of ith neu-
ron at discrete time t is described by the variable, xi(t).
The activation function ϕ is assumed to be an odd sat-
urated sigmoid function satisfying ϕ′(0) = 1, ϕ′(x) > 0,
ϕ′′(x) ≤ 0 (x ≥ 0) and ϕ(±∞) = ±1. The time evolu-
tion of a reservoir RNN is determined by the difference
equation,

xi(t) =

N∑
j=1

Jijϕ(xj(t− 1)) + uis(t) + ξi(t), (1)

where N ≫ 1 indicates the total number of neurons.
The recurrent weights, Jij , and the input weights, ui,
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are sampled i.i.d from Gaussian distributions, i.e. Jij ∼
N (0, g2/N) and ui ∼ N (0, 1). The parameter g controls
the strength of the recurrent weights. The input signal at
time t, represented by s(t), is Gaussian white noise with
zero mean and variance σ2

s . To take into account inherent
neuronal noise, each neuron is subjected to independent
Gaussian white noise, ξi(t), with zero mean and variance
σ2
n.
The macroscopic dynamical behavior of the large

random RNN described by Eq.(1) has been exten-
sively studied by means of dynamical mean-field theory
(DMFT) [11]. In the absence of the inputs and noise,
i.e. σ2

s = σ2
n = 0, the RNN exhibits phase transition

from zero fixed-point to chaotic dynamics at g = 1 in
the large network size limit [11, 12]. In the presence of
inputs (σ2

s > 0 or σ2
n > 0), chaotic variability is sup-

pressed [7, 8, 12–15].
The output of the reservoir RNN is defined as ẑ(t) =∑L
i=1 wixi(t), where L is the number of readout neurons.

We assume that the readout neurons are sparse, i.e. L ≪
N . According to the RC framework, the output weights,
{wi}Li=1, are optimized to minimize the time-averaged
squared error between the output signals, {ẑ(t)}Tt=1, and
the desired signals, {z(t)}Tt=1.
Memory capacity [5, 6] is a commonly used benchmark

for RC, quantifying how accurately a reservoir can repro-
duce its past Gaussian white noise inputs. Specifically,
it is defined as MC ≡

∑∞
d=0 Md, where

Md ≡ 1− minw⟨(ẑ(t)− s(t− d))2⟩
⟨s(t)2⟩

, (2)

where the angular bracket denotes time averaging. A
high value of Md indicates that the reservoir can accu-
rately output its input signal from d steps prior. It is
shown that 0 ≤ Md ≤ 1 holds true [5, 6]. Memory capac-
ity is defined as the infinite sum of Md, but it has been
proven to be finite and bounded by the number of read-
out neurons, i.e. 0 ≤ MC ≤ L [5, 6]. In particular, for
RC with a linear activation function operating in noise-
free conditions (σ2

n = 0), memory capacity is equivalent
to L independently of g and σ2

s [5].
Fig.1(b) illustrates the relationship between L and

the memory capacity for the reservoir RNN described
by Eq.(1), obtained through numerical simulations. As
shown, memory capacity exhibits monotonic growth, but
its growth rate gradually diminishes as L increases. Con-
sequently, memory capacity can be characterized as a
sublinear function of L.
To elucidate the mechanism behind the decaying

growth rate of memory capacity, we provide a novel the-
ory for deriving an analytical solution of memory ca-
pacity. Our approach incorporates some concepts and
methods from statistical physics. Hereafter, we make an
additional assumption regarding the scale of the model
parameters:

L = α
√
N, σ2

s =
σ̃2
s√
N

, σ2
n ∼ O(1), (3)

(a)

(b)
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FIG. 1. (a) Overview of RC utilizing a random RNN receiving
input signals and inherent neuronal noise. The shaded region
represents the readout neurons. (b) Numerical simulations
for memory capacity of the reservoir RNNs with network size
N = 1000, noise intensity σ2

n = 0.12, and activation func-
tion ϕ(x) = tanh(x). Shaded area represents mean±std of
direct numerical simulations for 10 different network and in-
put signal realizations. The sum of Md is calculated up to
d = 1000. The dashed line indicates the theoretical upper
bound of memory capacity, MC = L. Simulation time length
is T = 104.

where both α and σ̃2
s are O(1). The parameter α repre-

sents the relative magnitude of L compared to
√
N . In

contrast to previous models [7, 8, 16], where L ∼ O(1),
our model employs a significantly larger number of read-
out neurons, although the output connections remain
sparse, as L = α

√
N ≪ N

By simple calculation, Md defined in Eq.(2) can be
expressed as

Md =
a⊤
d C

−1ad

⟨s(t)2⟩
, (4)

where the elements of ad ∈ RL and C ∈ RL×L are re-
spectively (ad)i ≡ ⟨s(t − d)xi(t)⟩ and Cij ≡ ⟨xi(t)xj(t)⟩
(i, j indicate the indices of the readout neurons) [6]. The
inverse of the covariance matrix, C−1, prevents us from
making progress on analytical calculation. Previous the-
oretical studies circumvented this issue by assuming the
off-diagonal entries of C are zero, that is, ignoring neu-
ronal correlations [7, 8, 16]. However, this approximation
results in linear scaling of memory capacity, MC ∝ L,
conflicting with our numerical simulations as shown in
Fig.1(b).
We noticed that from the scale assumption Eq.(3), the

diagonal entries of C are O(1), whereas the non-diagonal
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ones are O(1/
√
N) (See Appendix.A). Hence, the non-

diagonal elements are much smaller than the diagonal
ones, which motivates us to perform Neumann series ex-
pansion,

C−1 = (D + C̃)−1 =

∞∑
n=0

D−1
(
−C̃D−1

)n
, (5)

where Dij ≡ δij⟨xi(t)
2⟩ and C̃ij ≡ (1 − δij)⟨xi(t)xj(t)⟩.

This approach allows us to circumvent the issue of the
inverse matrix and enables an analytical calculation of
Md.

In the large network size limit, we can assume self-
averaging for Md; limN→∞ Md = limN→∞[Md], where
the square bracket denotes the average over network real-
izations, known as quenched average [17]. Consequently,
substituting Eq.(5) into Eq.(4) and taking quenched av-
erage of Md, we analytically obtain memory capacity:

lim
N→∞

MC(L = α
√
N) = lim

N→∞

∞∑
d=0

[
Md(L = α

√
N)
]
(6)

=

∞∑
d=0

∞∑
n=0

(−1)n
{

ασ̃2
s

[⟨x2
i ⟩]

(
g⟨ϕ′(x)⟩x∼N (0,[⟨x2

i ⟩])

)2d}n+1

where the value of [⟨x2
i ⟩] can be obtained by solving a

self-consistent equation,

[⟨x2
i ⟩] = σ2

n + g2⟨ϕ(x)2⟩x∼N (0,[⟨x2
i ⟩]). (7)

In rigorously calculating quenched average, we employ
the dynamical cavity method, first introduced by Clark
et.al [18] from statistical physics to the analysis of neu-
ral networks. A detailed derivation is provided in Ap-
pendix.B 1. In the following, we use the shorthand no-
tation, ⟨f(x)⟩∗ ≡ ⟨f(x)⟩x∼N (0,[⟨x2

i ⟩]). Specifically, when

the activation function is an error function, ϕ(x) =∫ x

0
e−

π
4 t2dt, we can analytically integrate both ⟨ϕ′(x)⟩∗

and ⟨ϕ(x)2⟩∗ (see Appendix.B 1).
We have confirmed that the analytical values of MC

are consistent with the numerical simulations, exhibit-
ing a sublinear function of L, for L below a threshold
(Fig.2). When L exceeds the threshold, the analytical
values rapidly deviate from the simulated ones and even-
tually diverge (dashed lines in Fig.2). This is because
Neumann series expansion, Eq.(5), does not converge as

the spectrum norm ∥C̃D−1∥ exceeds one for large L. To
evaluate the upper bound of L ensuring convergence of
the series expansion, it is enough to evaluate ∥C̃D−1∥,
but this is a challenging task. Instead, we derive the
sufficient condition for the expansion series to converge
(see Appendix.B 1), and the upper values of L for this
sufficient condition are indicated by star marks in Fig.2.

Having obtained the analytical solution of memory ca-
pacity, we move on to elucidate the reason why memory
capacity grows sublinearly with respect to L. To quantify
the extent to which the growth rate of memory capacity
decays, we define a decay rate,

r(L) ≡ MC(L)

L×MC(1)
. (8)

（ ）α = 1.0

FIG. 2. Memory capacity as a function of L. An inset shows
corresponding decay rate r(L). Solid curves represent the
analytical solutions, while error bars indicate mean±std for
10 networks and inputs realizations obtained through numer-
ical simulations. Star marks represent the upper bounds
of the sufficient conditions for the convergence of the ex-
pansion series. Dashed lines indicate explosion of theoret-
ical values. The activation function is an error function,

ϕ(x) =
∫ x

0
e−

π
4
t2dt. The input intensity is σ2

s = 1.02/
√
N

(σ̃2
s = 1.02). The network size is N = 104, and simulation

time length is T = 104. Note that for these parameter values,
the input intensity is smaller than that in Fig.1 due to scaling
assumptions. In numerical simulations, Md values below a
cutoff threshold ϵ determined by Eq.(C5) are set to zero to
mitigate systematic positive errors arising from finite simula-
tion time.

For MC(L) scaling linearly with L, r(L) = 1 holds true
for all L. In contrast, r(L) decays from one when MC(L)
is a sublinear function of L. As depicted in Fig.2, r(L)
decays for various parameter combinations, confirming
the sublinear scaling of memory capacity with respect to
L.
Employing the solution of memory capacity (Eq.(6)),

we obtain an analytical form of the decay rate (see Ap-
pendix.B 2 for derivation):

lim
N→∞

r(L = α
√
N)= 1−

∞∑
n=1

(−1)n−1

(
σ̃2
s

[⟨x2
i ⟩]

α

)n

(9)

× 1− (g⟨ϕ′(x)⟩∗)2

1− (g⟨ϕ′(x)⟩∗)2n+2
.

It is noteworthy that the n-th term corresponds ex-
actly to the n-th term in the Neumann series expansion,
Eq.(5). Therefore, under the assumption of vanishing

neuronal correlations (C̃ = O), the summation terms in
Eq.(9) vanish, resulting in r(L) = 1. This implies that
higher neuronal correlations contribute to the faster de-
cay of r(L) through the contributions of the summation
terms in Eq.(9). In fact, we have confirmed that r(L)
rapidly decays for hyperparameters that lead to high neu-
ronal correlation, such as large input signals (σ̃2

s), small
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r(L)

L

1
0.5

Lhalf

Definition of Lhalf

FIG. 3. Relation between the level of neuronal correla-
tions and the half-life of memory capacity growth. Each data
point corresponds to a set of hyperparameters sampled from
g ∼ U(0.2, 2), σs ∼ U(0.1, 3) and σn ∼ U(0, 3) (100 samples
are plotted). Red points indicate parameter regimes beyond
our theoretical framework, as determined by Lhalf surpass-
ing the deviation threshold of the theoretical values of MC
(Fig.2). For each parameter set, the half-life of memory ca-
pacity growth, Lhalf , and pair-wise averaged absolute values
of Pearson correlation coefficients of neuronal activity, ρij ,
are calculated across 10 network and input realizations. The
mean values obtained from these 10 realizations are displayed
as a single plot in the figure. The activation function is a hy-
perbolic tangent function, ϕ(x) = tanh(x). The network size
is N = 1000, and the simulation time length is T = 104.

recurrent weights (g), and low noise intensity (σ2
n), as

depicted in Fig.6.

In the preceding sections, we derived the memory ca-
pacity under specific scaling assumptions (Eq.(3)). How-
ever, practical applications often deviate from these con-
ditions, raising the question of whether neuronal corre-
lations remain a key determinant of sublinear memory
capacity growth in more general settings. To address
this, Fig.3 explores a broader range of model parameters
including larger input intensities and various noise levels,
and different values of g. Here, we introduced a half-life
of memory capacity growth, Lhalf , defined as the value of
L at which r(L) equals 0.5 (Fig.3, inset). A lower Lhalf

indicates more rapid decay of r(L). Notably, as shown in
Fig.3, strong neuronal correlations are closely associated
with a faster decay of memory capacity growth, high-
lighting their persistent influence even when the original
scaling assumptions are relaxed.

While our previous analysis has focused on memory
capacity, non-linear computational ability is equally cru-
cial for RC to address complex tasks. As established in
previous works, there exists a trade-off between mem-
ory capacity and nonlinear computational ability for RC
[6, 19]. Thus, we expect that nonlinear computational
ability increases instead of a deceleration in the growth
rate of memory capacity.

Information processing capacity (IPC) introduced by
Dambre et al. [6] offers a task-independent metric for
evaluating the performance of RC, enabling a comprehen-

sive assessment of both linear and non-linear computa-
tional capabilities. Since IPC theory is somewhat compli-
cated, we provide detailed explanations in Appendix.C 1.
Put simply, the IPC for degree D, denoted by IPCD,
represents the reservoir’s ability to approximate D-th or-
der polynomial functions of Gaussian white noise input
signals. The IPC has two key properties. First, by def-
inition, memory capacity is exactly equivalent to IPC1,
and thus, IPCD for D ≥ 2 represents non-linear com-
putational ability. Second, it has been proven [6] that
the total IPC, IPCtotal ≡

∑∞
D=1 IPCD, equals to the

number of readout units, L, provided that the reservoir
satisfies echo state property [1], which ensures that the
reservoir’s state is uniquely determined solely by input
signals regardless of reservoir’s initial state.

Fig.4 illustrates how the values of IPCD for our
RNN model (Eq.(1)) obtained numerically change as
L increases across various hyperparameter combinations
(g, σs, and σn). Note that, due to the symmetry of
the model, IPCD values for even-degree D are identi-
cally zero. As shown, a decline in the growth of the
IPC1 (equivalent to memory capacity) is accompanied
by an increase in the non-linear computational ability
represented by IPCD for D ≥ 2, reflecting memory-
nonlinearity trade-off.

Our novel finding is the sequential emergence of higher-
degree IPC with L, as well as the supralinear rise in
nonlinear computational ability. This phenomenon is ob-
served not only in an RNN satisfying the echo state prop-
erty (Fig.4(a)), but also in a chaotic RNN (Fig.4(b)) and
in an RNN subject to neuronal noise (Fig.4(c)), where the
echo state property breaks down. Additionally, the same
finding is observed for an RNN employing the ReLU ac-
tivation function, although our theoretical framework for
deriving memory capacity is not applicable to the ReLU
function (see Appendix.C 2). As analytical derivation
of higher-degree IPC is beyond our capability, the de-
tailed mechanism underlying these observations remains
unclear. However, it is plausible that the neuronal cor-
relation plays a pivotal role, analogous to its influence
on memory capacity. This hypothesis is supported by
speculation that each IPCD would exhibit linear scal-
ing with L if the effects of neuronal correlations were
neglected, which contrasts with the observed supralinear
and sequential emergence (see Appendix.C 3).

In the present study, we have investigated the rela-
tionship between the number of readout neurons and the
computational capacity for large random RNN reservoirs.
Through analytical and numerical approaches, we have
demonstrated that the memory capacity grows sublin-
early with L, and that nonlinear computational capabil-
ities emerge incrementally with L, enabling the reservoir
to handle increasingly complex tasks. These findings in-
dicate that the number of readout connections should be
tailored to the specific memory and nonlinearity require-
ments of the task at hand. The specific values of IPC re-
quired for processing a given task can be evaluated using
framework proposed by [21]. By leveraging this frame-
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(a) (b) (c)

FIG. 4. IPC values for varying the number of readout neurons L of a reservoir RNN with activation function ϕ(x) = tanh(x)
and network size N = 1000. The top row panels show stacked representations of IPC values for each degree (IPCD), while the
bottom row panels provides a detailed breakdown of individual IPCD values. An enlarged view of the smaller IPC values is
shown in the insets in the bottom panels. The values of IPC for up to degree 9 are obtained. The model parameters (g, σs, σn)
are (0.9, 0.3, 0.0) for (a), (2.5, 2.0, 0.0) for (b), and (0.8, 0.3, 0.1) for (c), respectively. While

∑9
D=1 IPCD almost equals L for

(a), it falls significantly short of L for (b) and (c) (a dashed line denotes
∑∞

D=1 IPCD = L). This is attributed to the violation
of the echo state property. Specifically, the RNN for (b) is chaotic, as indicated by a positive maximum conditional Lyapunov
exponent [14, 20] (λmax = 0.087± 0.0067), while the RNN for (c) is subject to noise. Shaded area represents mean±std for 10
different network and input signal realizations. Simulation time length is T = 105.

work, it should be possible to systematically determine
an optimal L that balances resource utilization and com-
putational performance. In this way, our results provide
practical guidelines for the design of RC systems.

We showed that the level of neuronal correlations in-
fluences both the growth rate of memory capacity and
the incremental emergence of higher-order computational
abilities in an RNN. In neuroscience, the dimensionality
of neural representation is known to mediate the trade-off
between separability and generality in population cod-
ing: high-dimensional neural representations, character-
ized by low neuronal correlations, facilitate the separa-
tion of more complex patterns, while low-dimensional
representations, marked by higher neuronal correlations,
enhance noise robustness [22–24]. Our study offers a
novel perspective on the relationship between neuronal

geometry and computation from the viewpoint of dynam-
ical information processing.
We employ a large random RNN as a canonical model

for RC, but the generalizability of our findings to other
RNN architectures, such as spiking neural networks,
gated neural networks [25], and broader classes of dynam-
ical systems warrants further investigation. Nonetheless,
our insights provide valuable guidance for the design of
cost-effective RC and offer a novel perspective on neu-
ronal correlations.
We thank Joni Dambre for providing the source code

for computing information processing capacity. S.T. was
supported by JSPS KAKENHI Grant No. JP22KJ1959.
T.A. was supported by MEXT KAKENHI Grant Num-
bers 23H04467 and by JSPS KAKENHI Grant Numbers
24H00723, 20K20520.
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Appendix A: THEORETICAL ANALYSIS ON STATISTICS OF NEURONAL ACTIVITY

In this section, we derive statistics of neuronal activity based on dynamical cavity approach [18, 26]. Several results
and methodologies introduced here are frequently utilized in deriving memory capacity in Appendix.B.

In deriving single neuronal statistics such as the variance of xi(t) (see Appendix.A 1) in the limit of N → ∞, the
same result can be obtained via dynamical mean-field theory [11, 17] . However, since the dynamical mean-field
theory transforms the N -body system into the effective single-body system, it is inherently unable to evaluate many-
body neuronal statistics, such as neuronal correlations (see Appendix.A 2) and memory capacity(see Appendix.B 2). In
contrast, the dynamical cavity method is, in principle, applicable to n-body neuronal statistics for any n. Furthermore,
although the aforementioned limitation of dynamical mean-field theory has been recently addressed through sub-
leading corrections to saddle-point solution [27], the dynamical cavity method remains advantageous for its conceptual
clarity and computational feasibility.

In the following, we use the shorthand notation for brevity xi,t ≡ xi(t), st ≡ s(t), ϕi,t ≡ ϕ(xi,t) and ⟨xixj⟩ ≡
⟨xi(t)xj(t)⟩.

Before delving into the details, we first outline the necessity of employing the dynamical cavity method. Consider
calculating the quenched variance of neuronal activity, [x2

i,t]. For simplicity, we ignore input and noise signals.
According to time evolution equation of neurons (Eq.(1)), xi,t is the sum of a large number (N ≫ 1) of independent
quantities, Jijϕ(xj,t−1), which implies that xi,t follows a Gaussian distribution due to the central limit theorem. We
can intuitively calculate [x2

i,t] as:

[x2
i,t] =

N∑
j,k

[JijJikϕj,t−1ϕk,t−1]
?
=

N∑
j,k

[JijJik] [ϕj,t−1ϕk,t−1] = g2
[
ϕ2
j,t−1

]
= g2⟨ϕ(x)⟩x∼N (0,[x2

i,t−1])
, (A1)

yielding time series of [x2
i,t]. Here we assumed in the second equation that recurrent weights, Jij and Jik, are

independent of neuronal activities, ϕj and ϕk. Fortunately, this assumption is validated in the limit of N → ∞, as
shown with the dynamical mean-field theory. However, this assumption is likely to break down when finite size effects
are taken into account. To circumvent this challenge, we need to employ the dynamical cavity method.
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s(t)

Neuronal noise
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n

FIG. 5. Overview of dynamical cavity method. For simplicity, only one auxiliary neuron is illustrated, but in practice, n
auxiliary neurons are introduced to calculate n-body statistics. Latin indices, i, j, · · · , are used to label reservoir neurons, while
Greek indices, µ, ν, · · · , denote auxiliary neurons. The weights connecting auxiliary neurons to reservoir neurons, as well as the
self-connections of auxiliary neurons, are sampled from the same distribution as the recurrent weights of the reservoir.

1. Single neuronal statistics

We aim to derive the quenched average of the time-variance of neuronal activity, [⟨x2
i ⟩]. Note that due to self-

averaging, it is equivalent to the population average of time-variance to leading order, i.e. [⟨x2
i ⟩] = 1

N

∑N
i ⟨x2

i ⟩. The
symmetry of the model setting ensures that the quenched average of time-mean, [⟨xi⟩], vanishes.
The overview of dynamical cavity method is described in Fig.5. One auxiliary neuron, indexed by 0, is added to

the original reservoir RNN whose neurons are indexed by i = 1, · · · , N . The original neuron is perturbated by the
addition of the auxiliary neuron. By denoting the perturbation applied to the ith neuron at time t by δi,t, we describe
the dynamics of the auxiliary neuron as

x0,t+1=

N∑
i=1

J0iϕ(xi,t + δi,t) + J00ϕ0,t + u0st+1 + ξ0,t+1

=

N∑
i=1

J0iϕi,t +

N∑
i=1

J0iϕ
′
i,tδi,t + J00ϕ0,t + u0st+1 + ξ0,t+1. (A2)

Here, it should be noted that xi,t represents the original activity of a reservoir neuron before the introduction of the
auxiliary neuron. Therefore, the value of J0i is completely independent of reservoir activities, xi,t and ϕi,t, in contrast
to the intuitive argument in Eq.(A1).

We define χij,ts ≡ δxi,t/δIj,s as the linear susceptibility of the ith neuron at time t, induced by an infinitesimal
external inputs applied to the jth neuron at time s ≤ t, Ij,s. Then, as the perturbation to ith neuron at time t, δi,t,
is the sum of all direct perturbations to j ∈ {1, · · · , N} at time s < t weighted by the corresponding susceptibility
χij,ts, we obtain

δi,t =
∑
s<t

N∑
j=1

χij,tsJj0ϕ0,s. (A3)

We substitute Eq.(A3) into Eq.(A2), yielding

x0,t+1=

N∑
i=1

J0iϕi,t︸ ︷︷ ︸
≡ηt

+
∑
s<t

N∑
i,j

χij,tsJ0iJj0ϕ
′
i,t︸ ︷︷ ︸

≡κs

ϕ0,s + J00ϕ0,t + u0st+1 + ξ0,t+1

≡ ηt +
∑
s<t

κsϕ0,s + J00ϕ0,t + u0st+1 + ξ0,t+1.

(A4)

The physical interpretation of this equation is as follows. The first term, ηt, is the feedforward input from the reservoir.
The second term, κsϕ0,s, arises from the perturbation induced in the reservoir by the auxiliary neuron 0, which is
read out by neuron 0. The third term originates from self-connection of the auxiliary neuron 0.
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The order of the first term is evaluated as[
η2t
]
=

N∑
i,j

[J0iJ0jϕi,tϕj,t] =

N∑
i,j

[J0iJ0j ][ϕi,tϕj,t] = g2[ϕ2
i,t] ∼ O(1) (A5)

Here we used in the second equation the fact that J0i and J0j are independent of ϕi,t and ϕj,t as mentioned above.
The order of the third term is evaluated as[

(J00ϕ0,t)
2
]
≤ [J2

00] ∼ O(1/N). (A6)

For evaluation of the second term in Eq.(A4), we assess the order of χij,ts. We begin with s = t−1. Since χij,t t−1 =

Jijϕ
′
j,t−1, we find [χ2

ij,t t−1] ≤ [J2
ij ] ∼ O(1/N). Subsequently, for s = t− 2, χij,t t−2 =

∑N
k Jikϕ

′
k,t−1χkj,t−1 t−2, leading

to [χ2
ij,t t−2] ≤

∑N
k [J2

ik][(χkj,t−1 t−2)
2] ∼ O(1/N), where we used the result for s = t − 1, [(χkj,t−1 t−2)

2] ∼ O(1/N).

By inductively repeating this analysis, we conclude that [χ2
ij,ts] ∼ O(1/N) for any s < t. Therefore, the order of the

second term is evaluated as

[κ2
s]=

N∑
i,j,k,l

[J0iJj0J0kJl0][ϕ
′
i,tϕ

′
k,tχij,tsχkl,ts] ≤

g4

N2

N∑
i,j

[χ2
ij,ts] ∼ O(1/N). (A7)

Eventually, we obtain [κ2
s] ∼ O(1/N) for s < t.

Employing Cauchy–Schwarz inequality, it is shown that all cross terms between ηt, κs, and J00ϕ0,t are O(1/
√
N).

Leveraging all these order estimates, from Eq.(A4), we obtain

[x2
0,t+1]=

[(
ηt +

∑
s<t

κsϕ0,s + J00ϕ0,t + u0st+1 + ξ0,t+1

)2]
= [η2t ] + [u2

0]s
2
t+1 + [ξ20,t+1] +O(1/

√
N)

= g2[ϕ2
i,t] + s2t+1 + σ2

n +O(1/
√
N). (A8)

Thus, to leading order, we can ignore the non-trivial terms arising from the effects of the perturbations induced by
the auxiliary neuron. The statistical behavior of the auxiliary neuron is equivalent to that of the reservoir neurons,
which enables the replacement of [x2

0,t] with [x2
i,t], resulting in

[x2
i,t+1] = g2[ϕ2

i,t] + s2t+1 + σ2
n +O(1/

√
N). (A9)

For the scailing assumption given by Eq.(3), we can assume the inputs to be subleading, obtaining

[x2
i,t+1] = g2[ϕ2

i,t] + σ2
n +O(1/

√
N). (A10)

Taking the time average and the network size limit (N → ∞) yields a dynamical mean-field equation,

[⟨x2
i ⟩] = g2[⟨ϕ2

i ⟩] + σ2
n, (A11)

which is identical to Eq.(7) in the main text.
For later use, we evaluate the order of the quenched variance of ⟨x2

i ⟩, denoted by Var[⟨x2
i ⟩], which is equivalent to

the population variance because of the self-averaging property. Since the cavity method allows us to ignore the effects
of perturbation induced by the auxiliary neuron, we easily calculate [⟨x2

0⟩2] as

[⟨x2
0⟩2]=

〈( N∑
i

J0iϕi,t−1 + u0st + ξ0,t

)2〉2
=

2g4

N2

N∑
i,j

[⟨ϕiϕj⟩2] +
g4

N2

N∑
i,j

[⟨ϕ2
i ⟩⟨ϕ2

j ⟩] + 2g2(σ2
s + σ2

n)[⟨ϕ2
i ⟩] + 3σ4

s + σ4
n

= 2g4[⟨ϕiϕj⟩2]i ̸=j +
3g4

N
[⟨ϕ2

i ⟩2] + g4[⟨ϕ2
i ⟩⟨ϕ2

j ⟩]i ̸=j + 2g2(σ2
s + σ2

n)[⟨ϕ2
i ⟩] + 3σ4

s + σ4
n. (A12)

Employing Eq.(A9) and Eq.(A12), we obtain

Var[⟨x2
0⟩]= [⟨x2

0⟩2]− [⟨x2
0⟩]2

= g4
(
[⟨ϕ2

i ⟩⟨ϕ2
j ⟩]i ̸=j − [⟨ϕ2

i ⟩]2
)
+ 2g4[⟨ϕiϕj⟩2]i ̸=j +

3g4

N
[⟨ϕ2

i ⟩2] + 2σ4
s . (A13)
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Specifically, when σ2
s = σ̃2

s/
√
N , Var[⟨x2

0⟩] ∼ O(1/N) is self-consistent as follows:

Var[⟨x2
0⟩]= g4

(
[⟨ϕ2

i ⟩⟨ϕ2
j ⟩]i ̸=j − [⟨ϕ2

i ⟩]2
)
+ 2g4[⟨ϕiϕj⟩2]i ̸=j +

3g4

N
[⟨ϕ2

i ⟩2] +
2σ̃4

s

N
. (A14)

As shown in Appendix.A 2, we see [⟨ϕiϕj⟩2]i ̸=j ∼ O(1/N). The self-averaging property allows us to evaluate the first
term as

[⟨ϕ2
i ⟩⟨ϕ2

j ⟩]i ̸=j − [⟨ϕ2
i ⟩]2 ∼ 1

N2 −N

N∑
i,j (i ̸=j)

⟨ϕ2
i ⟩⟨ϕ2

j ⟩ −

(
N∑
i

⟨ϕ2
i ⟩

)2

∼ O

(
1

N

)
. (A15)

Consequently, we obtain Var[⟨x2
i ⟩] ∼ O(1/N).

A direct consequence of the scaling Var[⟨x2
i ⟩] ∼ O(1/N) is the following equation to leading order:[

1

⟨x2
i ⟩

]
=

1

[⟨x2
i ⟩]

, (A16)

provided that [⟨x2
i ⟩] ∼ O(1).

2. Statistics for neuronal correlations

We aim to derive the quenched average of the squared neuronal correlation, [⟨xixj⟩2], which is equivalent to the
population average to leading order, [⟨xixj⟩2] = 1/N2

∑
i,j(i ̸=j)⟨xixj⟩2. Similarly to the single neuronal statistics, the

model’s symmetry ensures that [⟨xixj⟩] = 0.
As in Appendix.A 1, we introduce two auxiliary neurons indexed by 0 and 0′ to the original reservoir RNN. Following

the notation in Clark’s work [18], Latin indices are used to label reservoir neurons, while Greek indices denote auxiliary
neurons. The dynamics of the auxiliary neurons µ ∈ {0, 0′} is described by

xµ,t+1=

N∑
i

Jµiϕ(xi,t + δi,t) +
∑
ν

Jµνϕν,t + uµst+1 + ξµ,t+1

=

N∑
i

Jµiϕi,t +

N∑
i

Jµiϕ
′
i,tδi,t +

∑
ν

Jµνϕν,t + uµst+1 + ξµ,t+1. (A17)

The perturbation δi,t is given by

δi,t =
∑
ν

Jiνϕν,t +
∑
s<t

∑
ν

N∑
j

χij,tsJjνϕν,s. (A18)

Substituting Eq.(A18) into Eq.(A17), we obtain

xµ,t+1=

N∑
i

Jµiϕi,t︸ ︷︷ ︸
≡ηµ,t

+
∑
s<t

∑
ν

N∑
i,j

JµiJjνϕ
′
i,tχij,ts︸ ︷︷ ︸

≡κµν,ts

ϕν,s +
∑
ν

Jµνϕν,t + uµst+1 + ξµ,t+1

≡ ηµ,t +
∑
ν

∑
s<t

κµν,tsϕν,s +
∑
ν

Jµνϕν,t + uµst+1 + ξµ,t+1.

(A19)

The physical interpretation of this equation is analogous to the case of single neuronal statistics (Eq.A4): ηµ,t denotes
direct feedforward input from the reservoir to the auxiliary neuron µ, and κµν,tsϕν,s arises from the perturbation
induced in the reservoir by the auxiliary neuron ν at time s, which is readout by the auxiliary neuron µ at time t.

Expanding [⟨x0x0′⟩2] using Eq.(A19), we need to evaluate all cross terms such as [⟨η0,tη0′,t⟩2] and [⟨κ0µ,tsκ0′ν,ts⟩2].
We can accomplish this task through direct calculation, analogous to the approach used in Appendix.A 1. First,

[⟨η0,tη0′,t⟩2]=
N∑

i,j,k,l

[J0iJ0′jJ0kJ0′l⟨ϕiϕj⟩⟨ϕkϕl⟩] =
N∑

i,j,k,l

[J0iJ0′jJ0kJ0′l][⟨ϕiϕj⟩⟨ϕkϕl⟩] =
g4

N
[⟨ϕ2

i ⟩2] + g4[⟨ϕiϕj⟩2](i ̸=j),

(A20)
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where we used in the second equation the fact that the weights connecting to auxiliary neurons are independent from
the reservoir neurons’ activities. By making an ansatz, [⟨ϕiϕj⟩2](i̸=j) ∼ O(1/N), we obtain [⟨η0,tη0′,t⟩2] ∼ O(1/N).
Next, in the same manner, we obtain

[⟨κ0µ,tsκ0′ν,ts⟩2]=
g8

N4

N∑
i,j,k,l

[⟨ϕ′
i,tϕ

′
k,tχij,tsχkl,ts⟩2] ≤ g8[⟨(ϕ′

i,t)
2⟩]2[⟨χ2

ij,ts⟩]2 ∼ O(1/N2).

(A21)

Repeating the same calculations, all cross terms except for the two O(1/N) terms, [⟨η0,tη0′,t⟩2] and [⟨(u0st)(u0′st)⟩2] =
σ̃4
s/N , are shown to scale as O(1/N2). Consequently,

[⟨x0x0′⟩2] =
g4

N
[⟨ϕ2

i ⟩2] + g4[⟨ϕiϕj⟩2](i ̸=j) +
σ̃4
s

N
+O

(
1

N2

)
.

(A22)

Replacing [⟨x0x0′⟩2] with [⟨xixj⟩2](i ̸=j), we obtain

[⟨xixj⟩2] =
g4

N
[⟨ϕ2

i ⟩2] + g4[⟨ϕiϕj⟩2] +
σ̃4
s

N
+O

(
1

N2

)
,

(A23)

for i ̸= j. From the ansatz, [⟨ϕiϕj⟩2](i̸=j) ∼ O(1/N), we see that [⟨xixj⟩2](i ̸=j) ∼ O(1/N).
Consequently, similar to single-neuron statistics, the non-trivial perturbation induced by auxiliary neurons, i.e., the

second and third terms in Eq.(A19), does not contribute to the leading order of neuronal correlations. In contrast,
in the case of a continuous-time RNN, the perturbation induced by auxiliary neurons contributes to the leading
order of neuronal correlations [18]. This discrepancy stems from the difference in the strength of the autocorrelation,

⟨xi(t)xi(t − τ)⟩t, which is O(1) in the continuous-time model but only O(1/
√
N) in our discrete-time model. This

property of negligible perturbation effects by auxiliary neurons in a discrete-time model greatly simplifies the analytical
derivation of memory capacity (see Appendix.B 1). Note that even in a discrete-time model, perturbation-induced
effects contribute to the leading-order term of neuronal correlations if the RNN dynamics include a leak term, i.e.

xi(t+ 1) = γxi(t) +
∑N

j Jijϕj(t) with γ > 0, which yields an O(1) autocorrelation.

To calculate [⟨ϕiϕj⟩2], we introduce Price’s theorem [17]. For two Gaussian variables,

(
z1
z2

)
∼ N

((
0
0

)
,

(
c1 τ
τ c2

))
,

and any smooth activation function ϕ, we define fϕ(c1, c2, τ) ≡ ⟨ϕ(z1)ϕ(z2)⟩. Price’s theorem then states:

∂τfϕ(c1, c2, τ) = fϕ′(c1, c2, τ) (A24)

Iteratively applying this theorem yields ∂n
τ fϕ(c1, c2, τ) = fϕ(n)(c1, c2, τ), which allows us to expand ⟨ϕ(z1)ϕ(z2)⟩

around τ = 0, resulting in

⟨ϕ(z1)ϕ(z2)⟩=
∑
n≥0

1

n!
τnfϕ(n)(c1, c2, 0) =

∑
n≥0

1

n!
⟨z1z2⟩n⟨ϕ(n)(z1)⟩⟨ϕ(n)(z2)⟩. (A25)

Applying Eq.(A25) to ⟨ϕiϕj⟩ yields

⟨ϕiϕj⟩= ⟨ϕ′
i,t⟩⟨ϕ′

j,t⟩⟨xixj⟩+
1

3!
⟨ϕ(3)

i,t ⟩⟨ϕ
(3)
j,t ⟩⟨xixj⟩3 +

1

5!
⟨ϕ(5)

i,t ⟩⟨ϕ
(5)
j,t ⟩⟨xixj⟩5 + · · · , (A26)

where we used ⟨ϕ(2n)(x)⟩ = 0 since ϕ(2n) is an odd function. Therefore, we obtain

[⟨ϕiϕj⟩2] = [⟨ϕ′
i,t⟩2]2[⟨xixj⟩2] +O

(
1

N2

)
. (A27)

Substituting Eq.(A27) into Eq.(A23) yields

[⟨xixj⟩2]=
g4

N
⟨ϕ(x)2⟩2∗ + g4⟨ϕ′(x)⟩4∗[⟨xixj⟩2] +

σ̃4
s

N
+O

(
1

N2

)
,

(A28)

where ⟨f(x)⟩∗ denotes taking the average of f(x) where x ∼ N (0, [⟨x2
i ⟩]). Therefore, we obtain

[⟨xixj⟩2] =
1

N

g4⟨ϕ(x)2⟩2∗ + σ̃4
s

1− g4⟨ϕ′(x)⟩4∗
+O

(
1

N2

)
, (A29)

which is self-consistent with the ansatz, [⟨ϕiϕj⟩2] ∼ O(1/N).
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3. Proof of 0 < g⟨ϕ′(x)⟩∗ < 1

We prove an inequality, 0 < g⟨ϕ′(x)⟩∗ < 1 for any g > 0, σ2
s ≥ 0, σ2

n ≥ 0, and odd saturated sigmoid function
satisfying ϕ′(0) = 1, ϕ′(x) > 0, ϕ′′(x) ≤ 0 (x ≥ 0) and ϕ(±∞) = ±1. We use the abbreviation, K ≡ [⟨x2

i ⟩]. It is
evident that g⟨ϕ′(x)⟩∗ > 0 because g > 0 and ϕ′(x) ≥ 0. We prove that g⟨ϕ′(x)⟩∗ < 1 below.
⟨ϕ′(x)⟩∗ is a decreasing function of K, because

d

dK
⟨ϕ′(x)⟩∗=

d

dK

∫ ∞

−∞
ϕ′(

√
Kz)Dz =

1√
K

∫ ∞

0

zϕ′′(
√
Kz)Dz ≤ 0, (A30)

where Dz denotes a normal Gaussian measure. Since K increases with both σ2
n and σ2

s , it follows that g⟨ϕ′(x)⟩∗
decreases correspondingly. Therefore, it is enough to show that g⟨ϕ′(x)⟩∗ ≤ 1 only for the case of no input and noise,
σ2
n = σ2

s = 0. In this case, from Eq.(7), K is determined by solving

K = g2
∫

ϕ2(
√
Kz)Dz. (A31)

For g ≤ 1, the only solution of this equation is K = 0, resulting in g⟨ϕ′(x)⟩∗ = gϕ′(0) ≤ 1. For g > 1, K is uniquely
determined as a function of g, so that g can be assumed to be a function of K,

g2 =
K∫

ϕ2(
√
Kz)Dz

. (A32)

Therefore, it suffices to show the inequality,

g2
(∫

ϕ′(
√
Kz)Dz

)2

=
K
(∫

ϕ′(
√
Kz)Dz

)2
∫
ϕ2(

√
Kz)Dz

≤ 1,

(A33)

for any K > 0. Employing integration by parts and Cauchy-Schwarz inequality, we can prove this inequality as

K

(∫
ϕ′(

√
Kz)Dz

)2

=

(∫
zϕ(

√
Kz)Dz

)2

≤
∫

z2Dz

∫
ϕ2(

√
Kz)Dz =

∫
ϕ2(

√
Kz)Dz. (A34)

Appendix B: ANALYSIS ON MEMORY CAPACITY

1. Analytical derivation of memory capacity

In this subsection, we derive the analytical solution of memory capacity. By simple calculation, Md defined in
Eq.(2) can be expressed as

Md =
a⊤
d C

−1ad

⟨s(t)2⟩
, (B1)

where the elements of a ∈ RL and C ∈ RL×L are respectively (ad)i ≡ ⟨s(t − d)xi(t)⟩ and Cij ≡ ⟨xi(t)xj(t)⟩ (i, j
indicate the indices of the readout neurons). Under the scaling assumption of model hyperparameters, Eq.(3), the
inverse of the covariance matrix C can be expanded using Neumann series expansion:

C−1 =

∞∑
n=0

D−1
(
−C̃D−1

)n
, (B2)

where Dij ≡ δij⟨xi(t)
2⟩ and C̃ij ≡ (1− δij)⟨xi(t)xj(t)⟩.

This series expansion is ensured to converge when the spectrum norm is less than one, ∥C̃D−1∥ < 1. However,

calculating the exact value of the spectrum norm is a challenging task. Employing the inequality ∥C̃D−1∥ ≤ ∥C̃D−1∥F ,
where ∥ · ∥F denotes a Frobenius norm, we can obtain the sufficient condition for the convergence, ∥C̃D−1∥F < 1.

The value of ∥C̃D−1∥F is calculated as

∥C̃D−1∥F=
α
√
N∑

i,j(i ̸=j)

⟨xixj⟩2

⟨x2
i ⟩2

= α2N

[
⟨xixj⟩2(i ̸=j)

⟨x2
i ⟩2

]
= α2N

[⟨xixj⟩2](i ̸=j)

[⟨x2
i ⟩]2

=
α2

[⟨x2
i ⟩]2

g4⟨ϕ(x)2⟩2∗ + σ̃4
s

1− g4⟨ϕ′(x)⟩4∗
, (B3)
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where the second equality employs the self-averaging property, and the final equality utilizes Eq.(A29). In addition,
the third equality follows from Eq.(A16). Consequently, we obtain the sufficient condition,

α2 <
[⟨x2

i ⟩]2

σ̃4
s + ([⟨x2

i ⟩]− σ2
n)

2

(
1− (g⟨ϕ′(x)⟩∗)4

)
, (B4)

where we used the equation, g2⟨ϕ(x)2⟩∗ = [⟨x2
i ⟩]− σ2

n, derived from the dynamical mean-field equation, Eq(A11).
Substituting the series expansion expression for C−1 into Eq.(B1), we obtain

Md =

√
N

σ̃2
s

α
√
N∑

i

⟨st−dxi,t⟩2

⟨x2
i ⟩

−
√
N

σ̃2
s

α
√
N∑

i,j
(i ̸=j)

⟨st−dxi,t⟩⟨xixj⟩⟨st−dxj,t⟩
⟨x2

i ⟩⟨x2
j ⟩

+

√
N

σ̃2
s

α
√
N∑

i,j,k
(i̸=j,j ̸=k)

⟨st−dxi,t⟩⟨xixj⟩⟨xjxk⟩⟨st−dxk,t⟩
⟨x2

i ⟩⟨x2
j ⟩⟨x2

k⟩
− · · · ,

(B5)

where for simplicity we used the shorthand notation xi,t ≡ xi(t), st ≡ s(t), and ⟨xixj⟩ ≡ ⟨xi(t)xj(t)⟩.
In the large network size limit, we can assume self-averaging for Md, that is, limN→∞ Md = [Md], where the square

bracket denotes the average over network realizations, known as ”quenched average” [17]. In addition, as neurons
exhibit statistically identical dynamics, the quenched averaging operation eliminates the dependence of each term in
Eq.(2) on neuron indices i, j, k, · · · . Consequently, Eq.(B5) can be reduced to

[Md] =
αN

σ̃2
s

[
⟨st−dxi,t⟩2

⟨x2
i ⟩

]
− α2N

3
2

σ̃2
s

[
⟨st−dxi,t⟩⟨xixj⟩⟨st−dxj,t⟩

⟨x2
i ⟩⟨x2

j ⟩

]
i ̸=j

+
α3N2

σ̃2
s

[
⟨st−dxi,t⟩⟨xixj⟩⟨xjxk⟩⟨st−dxk,t⟩

⟨x2
i ⟩⟨x2

j ⟩⟨x2
k⟩

]
i ̸=j
j ̸=k

− · · · .

(B6)

For the solution of memory capacity, it is enough to calculate each quenched averaging term in Eq.(B6). We perform
this calculation by the dynamical cavity method, similar to the approach described in Appendix.A. As noted there,
for a reservoir RNN with discrete time dynamics, perturbations induced by the auxiliary neurons do not contribute
to the leading order term, which simplifies the calculation.

To begin with, we calculate the first term. Employing Eq.(A16) and introducing an auxiliary neuron indexed by 0,
it is enough to calculate [⟨st−dx0,t⟩2] as:

[⟨st−dx0,t⟩2]=

〈st−d

(
N∑
i

J0iϕi,t−1 + u0st + ξ0,t

)〉2
 =

N∑
i,j

[
J0iJ0j⟨st−dϕi,t−1⟩2

]
+ [u2

0]⟨st−dst⟩2

=

N∑
i,j

[J0iJ0j ]
[
⟨st−dϕi,t−1⟩2

]
+ [u2

0]⟨st−dst⟩2 = g2[⟨st−(d−1)ϕi,t⟩2] + δd,0
σ̃4
s

N
, (B7)

where we used the independence between J0,i, J0,j and ϕi,t in the third equation. Since (st, xi,t) are Gaussian variables,
we apply Price’s theorem, resulting in

[⟨st−dx0,t⟩2] = g2[⟨ϕ′
i⟩2][⟨st−(d−1)x0,t⟩2] + δd,0

σ̃4
s

N
,

(B8)

where we restored [⟨st−(d−1)xi,t⟩2] to [⟨st−(d−1)x0,t⟩2]. This equation is a recurrence formula for [⟨st−dx0,t⟩2], whose
solution is

[⟨st−dx0,t⟩2] =
1

N
σ̃4
s (g⟨ϕ′(x)⟩∗)

2d
. (B9)

Consequently, we obtain

1st term of Eq.(B6) =
ασ̃2

s (g⟨ϕ′(x)⟩∗)2d

[⟨x2
i ⟩]

. (B10)

Next, we move on to the calculation of the second term. We introduce the two auxiliary neurons indexed by 0 and
0′, obtaining for d ≥ 1
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[⟨st−dx0,t⟩⟨x0x0′⟩⟨st−dx0′,t⟩]=

 N∑
i

J0i⟨st−dϕi,t−1⟩
N∑
j,k

J0jJ0′k⟨ϕjϕk⟩
N∑
l

J0′l⟨ϕl,t−1st−d⟩


=

N∑
i,j,k,l

[J0iJ0jJ0′kJ0′l⟨st−dϕi,t−1⟩⟨ϕjϕk⟩⟨ϕl,t−1st−d⟩]

=

N∑
i,j,k,l

[J0iJ0jJ0′kJ0′l] [⟨st−dϕi,t−1⟩⟨ϕjϕk⟩⟨ϕl,t−1st−d⟩]

=
g4

N2

N∑
i,j

[⟨st−dϕi,t−1⟩⟨ϕiϕj⟩⟨ϕj,t−1st−d⟩]

=
g4

N
[⟨st−(d−1)ϕi,t⟩2][⟨ϕ2

i ⟩] + g4
[
⟨st−(d−1)ϕi,t⟩⟨ϕiϕj⟩⟨ϕj,tst−(d−1)⟩

]
(i̸=j)

=
g4

N
[⟨st−(d−1)ϕ0,t⟩2][⟨ϕ2

i ⟩] + g4[⟨ϕ′(xi)⟩2]2
[
⟨st−(d−1)x0,t⟩⟨x0x0′⟩⟨x0′,tst−(d−1)⟩

]
,

(B11)

where the last equality follows from Price’s theorem. This equation is a recurrence formula for
[⟨st−dx0,t⟩⟨x0x0′⟩⟨st−dx0′,t⟩] with the initial condition (d = 0),

[⟨stx0,t⟩⟨x0x0′⟩⟨stx0′,t⟩] =
σ̃4
s

N
[⟨x0x0′⟩u0u0′ ] =

σ̃4
s

N

u0u0′

 N∑
i,j

J0iJ0′j⟨ϕiϕj⟩+ u0u0′⟨s2t ⟩

 = σ̃6
sN

−3/2. (B12)

Thus, the second term of Eq.(B11) for d = 1 is O(N−3/2). On the other hand, from Eq.(B9), the first term of
Eq.(B11) for d = 1 scales as O(N−2). As a result, this term becomes subleading and negligible. Consequently, solving
the recurrence formula yields

[⟨st−dx0,t⟩⟨x0x0′⟩⟨st−dx0′,t⟩] =
σ̃6
s (g⟨ϕ′(x)⟩∗)4d

N3/2
+ subleading terms (B13)

and thus

2nd term of Eq.(B6) = −α2σ̃4
s (g⟨ϕ′(x)⟩∗)4d

[⟨x2
i ⟩]2

+ subleading terms (B14)

Subsequently, we proceed to calculate the third term in Eq.(B6). It is enough to consider the case for i ̸= k because
the terms for i = k have the same order as those for i ̸= k, but the number of i = k terms, O(N2), is much smaller
than those of i ̸= k terms, O(N3), making their overall contribution subleading. We introduce three auxiliary neurons,
labeled 0, 0′, and 0′′, obtaining for d ≥ 1

[⟨st−dx0,t⟩⟨x0x0′⟩⟨x0′x0′′⟩⟨x0′′,tst−d⟩]=

 N∑
i

J0i⟨st−dϕi,t−1⟩
N∑
j,k

J0jJ0′k⟨ϕjϕk⟩
N∑
l,m

J0′lJ0′′m⟨ϕlϕm⟩
N∑
n

J0′′n⟨ϕn,t−1st−d⟩


=

g6

N3

N∑
i,j,k

[⟨st−dϕi,t−1⟩⟨ϕiϕj⟩⟨ϕjϕk⟩⟨ϕk,t−1st−d⟩]

=
g6

N2
[⟨ϕ2

i ⟩]2[⟨st−(d−1)ϕi,t⟩2] +
2g6

N
[⟨ϕ2

i ⟩]
[
⟨st−(d−1)ϕ0,t⟩⟨ϕ0ϕ0′⟩⟨ϕ0′,tst−(d−1)⟩

]
+g6[⟨ϕ′

i⟩2]3[⟨st−(d−1)x0,t⟩⟨ϕ0ϕ0′⟩⟨x0′x0′′⟩⟨x0′′,tst−(d−1)⟩], (B15)

where we used Price’s theorem in the last equality. This equation is a recurrence formula for
[⟨st−dx0,t⟩⟨x0x0′⟩⟨x0′x0′′⟩⟨x0′′,tst−d⟩] with initial condition (d = 0),

[⟨stx0,t⟩⟨x0x0′⟩⟨x0′x0′′⟩⟨x0′′,tst⟩]=
σ̃4

N
[⟨x0x0′⟩⟨x0′x0′′⟩u0u0′′ ]

=
σ̃4

N

u0u0′′

 N∑
i,j

J0iJ0′j⟨ϕiϕj⟩+ u0u0′⟨(st)2⟩

 N∑
i,j

J0′iJ0′′j⟨ϕiϕj⟩+ u0′u0′′⟨(st)2⟩


= σ̃8N−2. (B16)
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Therefore, the third term in Eq.(B15) for d = 1 is O(1/N2), while the first and second term scale O(1/N3) and
O(1/N5/2), respectively. As a result, only third term contributes to the leading order. Solving the recurrence formula,
Eq.(B15), to leading order, we obtain

[⟨stx0,t⟩⟨x0x0′⟩⟨x0′x0′′⟩⟨x0′′,tst⟩] =
σ̃8
s (g⟨ϕ′(x)⟩∗)6d

N2
+ subleading terms (B17)

and thus

3rd term of Eq.(B6) =
α3σ̃6

s (g⟨ϕ′(x)⟩∗)6d

[⟨x2
i ⟩]3

+ subleading terms (B18)

The analogous calculation can be applied to the remaining terms, and we finally obtain the analytical solution for
Md and memory capacity:

Md =

∞∑
n=0

(−1)n
{

ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)
2d
}n+1

, MC =

∞∑
d=0

∞∑
n=0

(−1)n
{

ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)
2d
}n+1

.

(B19)

Specifically, when the activation function is an error function, ϕ(x) =
∫ x

0
e−

π
4 t2dt, we can analytically integrate both

ϕ′(x) and ϕ(x)2, obtaining

MC =

∞∑
d=0

∞∑
n=0

(−1)n

{
ασ̃2

s

[⟨x2
i ⟩]

(
g2

1 + π
2 [⟨x

2
i ⟩]

)d
}n+1

, (B20)

where [⟨x2
i ⟩] is determined by solving

[⟨x2
i ⟩] = σ2

n + g2
(
−1 +

4

π
arctan

√
1 + π[⟨x2

i ⟩]
)
. (B21)

2. Analytical solution of the decay rate, limN→∞ r(L)

Noting that by applying Eq.(B19), the denominator in the definition of the decay rate, Eq.(8), can be calculated as

lim
N→∞

L×MC(1)
Eq.(B19)

= lim
N→∞

α
√
N ×

∞∑
d=0

∞∑
n=0

(−1)n
{

1√
N

σ̃2
s

[⟨x2
i ⟩]

(
g⟨ϕ′(x)⟩x∼N (0,[⟨x2

i ⟩])

)2d}n+1

=
ασ̃2

s

[⟨x2
i ⟩] (1− g2⟨ϕ′(x)⟩2∗)

, (B22)

the decay rate of memory capacity can be analytically derived as

lim
N→∞

r(L = α
√
N) =

[⟨x2
i ⟩]
(
1− g2⟨ϕ′(x)⟩2∗

)
ασ̃2

s

∞∑
d=0

∞∑
n=0

(−1)n
{

ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)
2d
}n+1

. (B23)

The two infinite summations,
∑∞

d=0 and
∑∞

n=1, can be swapped under the condition, Eq.(B4), because the infinite
series is absolutely convergent:

∞∑
d=0

∞∑
n=0

{
ασ̃2

s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)
2d
}n+1

=

∞∑
d=0

ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)2d

1− ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)2d
<

∞∑
d=0

ασ̃2
s

[⟨x2
i ⟩]

(g⟨ϕ′(x)⟩∗)
2d

<
ασ̃2

s

[⟨x2
i ⟩]

1

1− (g⟨ϕ′(x)⟩∗)2
< ∞.

(B24)

Here, in the first inequality, we apply the result 0 < g⟨ϕ′(x)⟩∗ < 1 proven in Appendix.A 3, and
ασ̃2

s

[⟨x2
i ⟩]

< 1 as shown

below:

ασ̃2
s

[⟨x2
i ⟩]

<
σ̃2
s

[⟨x2
i ⟩]

√
[⟨x2

i ⟩]2
σ̃4
s + ([⟨x2

i ⟩]− σ2
n)

2
(1− (g⟨ϕ′(x)⟩∗)4) <

σ̃2
s

[⟨x2
i ⟩]

√
[⟨x2

i ⟩]2
σ̃4
s

= 1, (B25)
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where we used Eq.(B4) in the first inequality.

Consequently, by interchanging the two infinite summations, the decay rate can be represented as

lim
N→∞

r(L = α
√
N) = 1−

∞∑
n=1

(−1)n−1

(
σ̃2
s

[⟨x2
i ⟩]

α

)n
1− (g⟨ϕ′(x)⟩∗)2

1− (g⟨ϕ′(x)⟩∗)2n+2
, (B26)

where the second term arises due to the neuronal correlations.

Fig.6 illustrates the dependence of the theoretically derived decay rate on the model parameters, σ̃s, g, and σn. As
can be seen, the decay rate decreases rapidly for large inputs (σ̃s), small recurrent weights (g), and small neuronal noise
(σn). Notably, these changes in hyperparameters result in increased neuronal correlations, which can be confirmed
by Eq.(A29). Consequently, we can expect the second term in Eq.(B26), which originates from neuronal correlations,
to grow as the neuronal correlations increase, leading to a faster decline in the decay rate.

(a) (b) (c)

r(α)

α α α

FIG. 6. Analytical solutions for the decay rate of memory capacity as a function of α. The activation function is an error

function, ϕ(x) =
∫ x

0
e−

π
4
t2dt. Each figure varies a single parameter: (a) input intensity σ̃2

s , (b) recurrent weight scale g, (c)

noise intensity σ2
n, while the remaining parameters are fixed (g = 1.2, σ̃2

s = 1.02, σ2
n = 0.52). A gradient from darker to lighter

gray lines indicates a decreasing level of neuronal correlations.

3. Decay rate for a linear RNN

We mention the decay rate of memory capacity for the reservoir RNN with a linear activation function, ϕ(x) = x.
In this case, the decay rate can be derived as

lim
N→∞

r(L = α
√
N) = 1 +

∞∑
n=1

(
σ̃2
s

σ2
n

α

)n
(1− g2)n

1− g2n+2
, (B27)

where the value of g must be less than one to ensure the stability of the reservoir RNN. Analogous to non-linear
RNNs, the memory capacity of the linear RNN with neuronal noise exhibits sublinear scaling with respect to L, as
illustrated in Fig.7. In contrast, for a linear RNN in the absence of noise, the memory capacity is known to be exactly
L [5], resulting in r(L) = 1. It is intriguing that the presence or absence of noise greatly affects the scaling behavior
of memory capacity with respect to L.

Here, we mention several points. First, the sublinear scaling of memory capacity for a linear RNN subject to neuronal
noise is not accompanied by an increase in nonlinear computational capabilities, unlike in the case of a nonlinear RNN
(Fig.4(a)(b)). This is simply because a linear RNN lacks the ability to perform nonlinear computations. Consequently,
in a linear RNN, the sublinear scaling of memory capacity solely reflects a decline in overall computational performance
caused by neuronal noise. Second, our theoretical analysis based on the Neumann series expansion cannot be applied
to the noise-free linear RNN. In this setting, the diagonal entries of covariance matrix C are comparable to its
non-diagonal entries, both scaling as O(1/

√
N), which prevents us from employing the Neumann series expansion.
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(a) (b)

（ ）α = 1.0（ ）α = 1.0

FIG. 7. (a) Memory capacity and (b) growth rate of memory capacity for linear RNNs. The figure’s structure and content are

the same as Fig.2, with analytical and numerical results presented in the same format. The input intensity is σ2
s = 1.02/

√
N

(σ̃2
s = 1.02). The activation function is an error function, ϕ(x) =

∫ x

0
e−

π
4
t2dt. In simulations, the network size is N = 104, and

simulation time length is T = 104.

Appendix C: INFORMATION PROCESSING CAPACITY THEORY

1. Overview of IPC theory

We provide a concise overview of the IPC, including its definition and key properties. We consider a reservoir
receiving input signals {s(t)}t. The general task is formulated as optimizing output weights such that the reservoir’s
output ẑ(t) approximates a given function of the inputs, f [· · · , s(t − 1), s(t)]. For input signals drawn i.i.d from a
standard Gaussian distribution, the orthonormal basis functions spanning the Hilbert space containing f are expressed
as a formally infinite product of normalized Hermite polynomials:

yd =
∏
i≥0

Hdi
(s(t− i)) , (C1)

where Hdi
(·) (di ≥ 0) denotes the normalized Hermite polynomial of degree di, and vector-form index d ≡ (di)i≥0 has

only a finite number of non-zero elements. Since H0 = 1, the product in Eq.(C1) is effectively finite. The summation
of di is equivalent to the degree of the polynomial yd, defined as deg(yd) ≡

∑
i≥0 di.

The Capacity for the reservoir to reconstruct the function of inputs, f , is defined as

CT [f ] ≡ 1− minw⟨(ẑ(t)− f(t))2⟩T
⟨f(t)2⟩T

, (C2)

where ⟨·⟩T denotes the time average over simulation time T . It is proven that 0 ≤ CT [f ] ≤ 1 holds true for any
function f . The total IPC is subsequently defined as the summation of capacities across all basis polynomials:

IPCtotal ≡
∑
d

CT [yd]. (C3)

It has been established that limT→∞ IPCtotal is equivalent to the number of readout units, L, provided that the
reservoir satisfies echo state property [1], whereby the reservoir’s state is uniquely determined solely by input signals.

The total IPC can be decomposed based on the degree of the basis polynomials. We define the IPC for degree D as

IPCD ≡
∑
d

s.t. deg(yd)=D

CT [yd]. (C4)

Crucially, IPC1 is identical to memory capacity, as CT [yd] for deg(yd) = 1 corresponds to Eq.(2). In contrast, IPCD

for D ≥ 2 represents a non-linear computational ability of the reservoir.
When calculating the capacities by numerical simulation, we must take care not to overestimate them, because for

finite simulation time T , they are subject to a systematic positive error. Following the approach of Dambre et al. [6],
we determine the threshold of the capacities, ϵ, as

ϵ ≡ 2θ

T
, θ ≡ argθ

{
P[χ2(L) ≥ θ] = p

}
, (C5)
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where χ2(L) denotes a random variable that follows a Chi-squared distribution with L degrees of freedom. The value
of p represents the probability that a truly zero capacity is incorrectly assessed as non-zero. We assume CT = 0 if
CT is lower than a threshold value ϵ. Following Dambre et al., we set p = 10−4 for all our numerical simulations of
memory capacity (= IPC1) and IPC, although the choice of p has a negligible impact on our results.

Note that calculating the IPC values of our reservoir RNN model requires a minor correction to the time evolution
equation, Eq.1, as

xi(t) =

N∑
j=1

Jijϕ(xi(t− 1)) + uiσss(t) + ξi(t), s(t) ∼ N (0, 1), (C6)

where the standard deviation of the input signals, σs, is now incorporated as a scaling factor of the standard Gaussian
noise inputs. This correction is necessary because IPC is defined for a reservoir receiving standard Gaussian noise
inputs. Importantly, this modification does not alter the statistical behavior or computational ability of the original
RNN model.

2. Simulation results for IPC for an RNN with the ReLU activation function

Our theoretical framework for the analytical derivation of memory capacity cannot be applied to the RNNs with
the ReLU activation function. This limitation arises because Price’s theorem (Eq.(A25)) cannot be used for the
ReLU function, as it is non-smooth at the origin. Therefore, we numerically obtain memory capacity and IPC of a
ReLU RNN, as shown in Fig.8. Similarly to the RNNs employing the sigmoid function, the memory capacity (IPC1)
increases sublinearly with L, while non-linear computational capacities (IPCD for D ≥ 2) emerge supralinearly and
sequentially.

Note that unlike the sigmoid RNNs, the ReLU RNNs do not exhibit chaotic behavior. Instead, they diverge when
the parameter g exceeds a critical value, gc. To demonstrate this, substituting ϕ(x) = max(0, x) into the dynamical
mean-field equation (Appendix.A 1), we obtain

[xi(t+ 1)2] =
g2

2
[xi(t)

2] + s(t+ 1)2 + σ2
n +O(1/

√
N). (C7)

This self-consistent equation admits a stable solution only when g < gc =
√
2. For g > gc, the system diverges

regardless of the parameters σs and σn. Consequently, the numerical simulations presented in Fig.8 are conducted
with g values strictly less than

√
2.

3. Linear scaling of IPCD with L for vanishing neuronal correlations

In the main text, we claim that each IPCD forD ≥ 1 exhibits linear scaling with L if we ignore neuronal correlations.
The following provides a concise proof of this claim. First, similarly to Eq.(4), the capacity for a basis function yd
can be expressed as

CT [yd] =
a⊤C−1a

⟨yd(t)2⟩
, (C8)

where the elements of a ∈ RL are ai = ⟨yd(t)xi(t)⟩ and the matrix C ∈ RL×L is the covariance matrix of the readout
neurons. Assuming neuronal correlations vanish, the capacity for any yd is proportional to L since

CT [yd]≈ [CT [yd]] ≈

[
L∑
i

⟨yd(t)xi(t)
2⟩

⟨xi(t)2⟩⟨yd(t)2⟩

]
= L

[
⟨yd(t)xi(t)⟩2

⟨xi(t)2⟩⟨yd(t)2⟩

]
∝ L, (C9)

where we assume the self-averaging of the capacity in the first approximation equation, and in the second approxi-
mation equation, we ignore the correlation ⟨xixj⟩.
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(a) (b)

ReLU, g = 1.0,input = 1.0,noise = 0
λmax = − 0.35 ± 0.007

ReLU, g = 1.0,input = 1.0,noise = 0.3

FIG. 8. IPC values for varying the number of readout neurons L of a reservoir RNN with the ReLU activation function
ϕ(x) = max(0, x) and network size N = 1000. The figure’s structure and content mirror Fig.4. The values of IPC for up
to degree 5 are calculated. Simulation time length is T = 104. The model parameters (g, σs, σn) are (1.0, 1.0, 0.0) for (a)
and (1.0, 1.0, 0.3) for (b). The RNN for (a) satisfies the echo state property since its positive maximum conditional Lyapunov
exponent is negtive (λmax = −0.35± 0.007), while the property breaks down for (b) as the RNN receives neuronal noise.
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